Microtubule ionic conduction and its implications for higher cognitive functions.

Author: Craddock TJ, Tuszynski JA, Priel A, Freedman H.
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada. tcraddoc@phys.ualberta.ca
Conference/Journal: J Integr Neurosci.
Date published: 2010 Jun
Other: Volume ID: 9 , Issue ID: 2 , Pages: 103-22 , Word Count: 192



The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
PMID: 20589950

BACK