Photon production from the vacuum close to the superradiant transition: linking the dynamical casimir effect to the kibble-zurek mechanism.

Author: Vacanti G, Pugnetti S, Didier N, Paternostro M, Palma GM, Fazio R, Vedral V.
Affiliation:
Center for Quantum Technologies, National University of Singapore, 1 Science Drive 2, Singapore.
Conference/Journal: Phys Rev Lett.
Date published: 2012 Mar 2
Other: Volume ID: 108 , Issue ID: 9 , Pages: 093603 , Word Count: 144



The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.
PMID: 22463635

BACK