Effect of transcutaneous electrical nerve stimulation on muscle metaboreflex in healthy young and older subjects.

Author: Vieira PJ, Ribeiro JP, Cipriano G Jr, Umpierre D, Cahalin LP, Moraes RS, Chiappa GR.
Affiliation:
Exercise Pathophysiology Research Laboratory and Cardiology Division, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-007, Brazil, pjcv28@yahoo.com.br.
Conference/Journal: Eur J Appl Physiol.
Date published: 2011 Jul 28
Other: Word Count: 235


Transcutaneous electrical nerve stimulation (TENS) increases local blood flow. It is not known whether increase in blood flow may be caused by inhibition of sympathetic activity, mediated by muscle metaboreflex activity. The purpose of this study was to evaluate the effect of TENS on metaboreflex activation and heart rate variability (HRV) in young and older individuals. Eleven healthy young (age 25 ± 1.3 years) and 11 healthy older (age 63 ± 4.2 years) were randomized to TENS (30 min, 80 Hz, 150 μs) or placebo (same protocol without electrical output) applied on the ganglion region. Frequency domain indices of HRV and hemodynamic variables were evaluated during the pressor response to static handgrip exercise at 30% of maximal voluntary contraction, followed by recovery with (PECO+) or without (PECO-) circulatory occlusion, in a randomized order. At the peak exercise, the increase in mean blood pressure was attenuated by TENS (P < 0.05), which was sustained during PECO+ and PECO-. TENS promoted a higher calf blood flow and lower calf vascular resistance during exercise and recovery. Likewise, TENS induced a reduction in the estimated muscle metaboreflex control both in young (placebo: 28 ± 4 units vs. TENS: 6 ± 3, P < 0.01) and in older individuals (placebo: 13 ± 3 units vs. TENS: 5 ± 3, P < 0.01). HRV analysis showed similar improvement in sympatho-vagal balance with TENS in young and older individuals. We conclude that application of TENS attenuates blood pressure and vasoconstrictor responses during exercise and metaboreflex activation, associated with improved sympatho-vagal balance in healthy young and older individuals.

PMID: 21796410

BACK