Approximate entropy as a measure of system complexity

Author: S M Pincus1
Affiliation:
1 990 Moose Hill Road, Guilford, CT 06437, USA.
Conference/Journal: Proc Natl Acad Sci U S A
Date published: 1991 Mar 15
Other: Volume ID: 88 , Issue ID: 6 , Pages: 2297-301 , Special Notes: doi: 10.1073/pnas.88.6.2297. , Word Count: 98


Techniques to determine changing system complexity from data are evaluated. Convergence of a frequently used correlation dimension algorithm to a finite value does not necessarily imply an underlying deterministic model or chaos. Analysis of a recently developed family of formulas and statistics, approximate entropy (ApEn), suggests that ApEn can classify complex systems, given at least 1000 data values in diverse settings that include both deterministic chaotic and stochastic processes. The capability to discern changing complexity from such a relatively small amount of data holds promise for applications of ApEn in a variety of contexts.


PMID: 11607165 PMCID: PMC51218 DOI: 10.1073/pnas.88.6.2297

BACK