Heartbeat and Somatosensory Perception

Author: Esra Al1, Fivos Iliopoulos2, Vadim V Nikulin3, Arno Villringer4
Affiliation:
1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany. Electronic address: esraal@cbs.mpg.de.
2 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
3 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 101000 Moscow, Russia.
4 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
Conference/Journal: Neuroimage
Date published: 2021 Jun 7
Other: Special Notes: doi: 10.1016/j.neuroimage.2021.118247. , Word Count: 240


Our perception of the external world is influenced by internal bodily signals. For example, we recently showed that timing of stimulation along the cardiac cycle and spontaneous fluctuations of heartbeat-evoked potential (HEP) amplitudes influence somatosensory perception and the associated neural processing (Al et al., 2020). While cardiac phase affected detection sensitivity and late components of the somatosensory-evoked potentials (SEPs), HEP amplitudes affected detection criterion and both early and late SEP components. In a new EEG study, we investigate whether these results are replicable in a modified paradigm, which includes two succeeding temporal intervals. In one of the intervals, subjects received a weak electrical finger stimulation and reported first whether they detected any stimulation and then allocated the stimulus to one of the two intervals. Our results confirm the previously reported cardiac cycle and prestimulus HEP effects on somatosensory perception and evoked potentials. In addition, we obtained two new findings. Source analyses in this and our original study show that the increased likelihood of conscious perception goes along with HEP fluctuations in parietal and posterior cingulate regions, known to play important roles in interoceptive processes. Furthermore, HEP amplitudes were shown to decrease when subjects engaged in the somatosensory task compared to a resting state condition. Our findings are consistent with the view that HEP amplitudes are a marker of interoceptive (versus exteroceptive) attention and provide a neural underpinning for this view.

Keywords: Somatosensory processing; electrophysiology; interoception; perceptual awareness.

PMID: 34111514 DOI: 10.1016/j.neuroimage.2021.118247

BACK