Author: Kai H1, Yamauchi T2, Ogawa Y1, Tsubota A1, Magome T1, Miyake T1, Yamasaki K2, Nishizawa M1
Affiliation:
1Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
2Department of Dermatology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
Conference/Journal: Adv Healthc Mater.
Date published: 2017 Sep 20
Other:
Special Notes: doi: 10.1002/adhm.201700465. [Epub ahead of print] , Word Count: 210
Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available. Using flexible enzymatic electrodes and stretchable hydrogel, a stretchable bioelectric plaster is fabricated with a built-in enzymatic biofuel cell (EBFC) that fits to skin and generates ionic current along the surface of the skin by enzymatic electrochemical reactions for more than 12 h. To investigate the efficacy of the fabricated bioelectric plaster, an artificial wound is made on the back skin of a live mouse and the wound healing is observed for 7 d in the presence and absence of the ionic current of the bioelectric plaster. The time course of the wound size as well as the hematoxylin and eosin staining of the skin section reveals that the ionic current of the plaster leads to faster and smoother wound healing. The present work demonstrates a proof of concept for the electrical manipulation of biological functions by EBFCs.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
KEYWORDS: electrical stimulation; enzymatic biofuel cells; wearable devices; wound healing
PMID: 28929631 DOI: 10.1002/adhm.201700465