Magnetic Fields Facilitate DNA-Mediated Charge Transport.

Author: Wong JR1, Lee KJ, Shu JJ, Shao F1.
Affiliation:
1†Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
Conference/Journal: Biochemistry
Date published: 2015 Jun 2
Other: Volume ID: 54 , Issue ID: 21 , Pages: 3392-9 , Special Notes: doi: 10.1021/acs.biochem.5b00295. , Word Count: 165


Abstract
Exaggerated radical-induced DNA damage under magnetic fields is of great concern to medical biosafety and biomolecular electronic devices. In this report, the effects of an external magnetic field (MF) on DNA electronic conductivity were investigated by studying the efficiencies of photoinduced DNA-mediated charge transport (CT) via guanine damage. Under a static MF of 300 mT, positive enhancements in the decomposition of 8-cyclopropyldeoxyguanosine ((8CP)G) were observed at both the proximal and distal guanine doublets, indicating a more efficient propagation of radical cations and higher electronic conductivity of duplex DNA. MF-assisted CT has shown sensitivity to magnetic field strength, duplex structures, and the integrity of base pair stacking. Spin evolution of charge injection and the alignment of base pairs to the CT-active conformation during radical propagation were proposed to be the two major factors that MF contributes to facilitate DNA-mediated CT. Herein, MF-assisted CT may offer a new avenue for designing DNA-based electronic devices and unraveling MF effects on redox and radical relevant biological processes.
PMID: 25946473

BACK