Author: Morquette P1, Verdier D1, Kadala A1, Féthière J2, Philippe AG3, Robitaille R1, Kolta A4.
Affiliation:
1Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada. 2Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada. 31] Faculté des Sciences du Sport, Université Montpellier 1, Montpellier, France. [2] Institut National de la Recherche Agronomique, UMR866 Dynamique Musculaire Et Métabolisme, Montpellier, France. 41] Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada. [2] Faculté de Médecine Dentaire and Réseau de Recherche en Santé Bucco-dentaire et Osseuse du Fonds de Recherche Québec-Santé, Université de Montréal, Montréal, Québec, Canada.
Conference/Journal: Nat Neurosci.
Date published: 2015 May 4
Other:
Special Notes: doi: 10.1038/nn.4013 , Word Count: 167
Abstract
Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100β, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100β antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity.
PMID: 25938883
KEYWORDS newswise glial cells
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4013.html