The effect of listening to music on human transcriptome.

Author: Kanduri C1, Raijas P2, Ahvenainen M1, Philips AK1, Ukkola-Vuoti L1, Lähdesmäki H3, Järvelä I1.
Affiliation:
1Department of Medical Genetics, University of Helsinki , Finland. 2DocMus Department, University of the Arts Helsinki , Helsinki , Finland. 3Department of Information and Computer Science, Aalto University , AALTO , Finland.
Conference/Journal: Peer J.
Date published: 2015 Mar 12
Other: Volume ID: 3 , Pages: e830 , Special Notes: doi: 10.7717/peerj.830 , Word Count: 302


Abstract
Although brain imaging studies have demonstrated that listening to music alters human brain structure and function, the molecular mechanisms mediating those effects remain unknown. With the advent of genomics and bioinformatics approaches, these effects of music can now be studied in a more detailed fashion. To verify whether listening to classical music has any effect on human transcriptome, we performed genome-wide transcriptional profiling from the peripheral blood of participants after listening to classical music (n = 48), and after a control study without music exposure (n = 15). As musical experience is known to influence the responses to music, we compared the transcriptional responses of musically experienced and inexperienced participants separately with those of the controls. Comparisons were made based on two subphenotypes of musical experience: musical aptitude and music education. In musically experiencd participants, we observed the differential expression of 45 genes (27 up- and 18 down-regulated) and 97 genes (75 up- and 22 down-regulated) respectively based on subphenotype comparisons (rank product non-parametric statistics, pfp 0.05, >1.2-fold change over time across conditions). Gene ontological overrepresentation analysis (hypergeometric test, FDR < 0.05) revealed that the up-regulated genes are primarily known to be involved in the secretion and transport of dopamine, neuron projection, protein sumoylation, long-term potentiation and dephosphorylation. Down-regulated genes are known to be involved in ATP synthase-coupled proton transport, cytolysis, and positive regulation of caspase, peptidase and endopeptidase activities. One of the most up-regulated genes, alpha-synuclein (SNCA), is located in the best linkage region of musical aptitude on chromosome 4q22.1 and is regulated by GATA2, which is known to be associated with musical aptitude. Several genes reported to regulate song perception and production in songbirds displayed altered activities, suggesting a possible evolutionary conservation of sound perception between species. We observed no significant findings in musically inexperienced participants.
KEYWORDS:
Dopamine; Gene expression profiling; Genomics; Long-term potentiation; Music; Peripheral blood; RNA; SNCA
PMID: 25789207

BACK