Author: Cameron IL1, Markov MS2, Hardman WE3.
Affiliation:
1Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229 USA. 2Research International, Williamsville, New York 14221 USA. 3Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr., Huntington, 25755 West Virginia.
Conference/Journal: Cancer Cell Int.
Date published: 2014 Dec 7
Other:
Volume ID: 14 , Issue ID: 1 , Pages: 125 , Special Notes: doi: 10.1186/s12935-014-0125-5 , Word Count: 266
BACKGROUND:
This study provided additional data on the effects of a therapeutic electromagnetic field (EMF) device on growth and vascularization of murine 16/C mammary adenocarcinoma cells implanted in C3H/HeJ mice.
METHODS:
The therapeutic EMF device generated a defined 120 Hz semi sine wave pulse signal of variable intensity. Murine 16/C mammary adenocarcinoma tumor fragments were implanted subcutaneously between the scapulae of syngeneic C3H mice. Once the tumor grew to 100 mm(3), daily EMF treatments were started by placing the cage of mice within the EMF field. Treatment ranged from 10 to 20 milli-Tesla (mT) and was given for 3 to 80 minutes either once or twice a day for 12 days. Tumors were measured and volumes calculated each 3-4 days.
RESULTS:
Therapeutic EMF treatment significantly suppressed tumor growth in all 7 EMF treated groups. Exposure to 20mT for 10 minutes twice a day was the most effective tumor growth suppressor. The effect of EMF treatment on extent of tumor vascularization, necrosis and viable area was determined after euthanasia. The EMF reduced the vascular (CD31 immunohistochemically positive) volume fraction and increased the necrotic volume of the tumor. Treatment with 15 mT for 10 min/d gave the maximum anti-angiogenic effect. Lack of a significant correlation between tumor CD 31 positive area and tumor growth rate indicates a mechanism for suppression of tumor growth in addition to suppression of tumor vascularization.
CONCLUSION:
It is proposed that EMF therapy aimed at suppression of tumor growth and vascularization may prove a safe alternative for patients whether they are or are not candidates for conventional cancer therapy.
KEYWORDS:
Angiogenesis; Breast cancer; Electromagnetic field (EMF); Endothelial cell marker (CD31); Immunohistochemical
PMID: 25530714