DNA and Cell Resonance: Magnetic Waves Enable Cell Communication.

Author: Meyl K.
Conference/Journal: DNA Cell Biol.
Date published: 2011 Oct 19
Other: Word Count: 267


DNA generates a longitudinal wave that propagates in the direction of the magnetic field vector. Computed frequencies from the structure of DNA agree with those of the predicted biophoton radiation. The optimization of efficiency by minimizing the conduction losses leads to the double-helix structure of DNA. The vortex model of the magnetic scalar wave not only covers many observed structures within the nucleus perfectly, but also explains the hyperboloid channels in the matrix when two cells communicate with each other. Potential vortexes are an essential component of a scalar waves, as discovered in 1990. The basic approach for an extended field theory was confirmed in 2009 with the discovery of magnetic monopoles. For the first time, this provides the opportunity to explain the physical basis of life not only from the biological discipline. Nature covers the whole spectrum of known scientific fields of research, and interdisciplinary understanding is required to explain its complex relationships. The characteristics of the potential vortex are significant. With its concentration effect, it provides for miniaturization down to a few nanometers, which allows enormously high information density in the nucleus. With this first introduction of the magnetic scalar wave, it becomes clear that such a wave is suitable to use genetic code chemically stored in the base pairs of the genes and electrically modulate them, so as to "piggyback" information from the cell nucleus to another cell. At the receiving end, the reverse process takes place and the transported information is converted back into a chemical structure. The necessary energy required to power the chemical process is provided by the magnetic scalar wave itself.

PMID: 22011216