Author: Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, Arntsen IE, Sæther JG, Hollup S, Holen A, Davanger S, Ellingsen O.
Affiliation: 1 Discipline of Psychological Medicine and Northern Clinical School, University of Sydney , Sydney, New South Wales, Australia .
Conference/Journal: J Altern Complement Med.
Date published: 2009 Nov
Other:
Volume ID: 15 , Issue ID: 11 , Pages: 1187-1192 , Word Count: 287
Abstract Objectives: In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and maintaining good health. Despite its popularity, little is known about the neural mechanisms by which meditation works, and there is a need for more rigorous investigations of the underlying neurobiology. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during meditation inspired by techniques that focus on concentration, and in comparison much less has been reported on mindfulness and nondirective techniques that are proving to be just as popular. Design: The present study examined EEG changes during nondirective meditation. The investigational paradigm involved 20 minutes of acem meditation, where the subjects were asked to close their eyes and adopt their normal meditation technique, as well as a separate 20-minute quiet rest condition where the subjects were asked to close their eyes and sit quietly in a state of rest. Both conditions were completed in the same experimental session with a 15-minute break in between. Results: Significantly increased theta power was found for the meditation condition when averaged across all brain regions. On closer examination, it was found that theta was significantly greater in the frontal and temporal-central regions as compared to the posterior region. There was also a significant increase in alpha power in the meditation condition compared to the rest condition, when averaged across all brain regions, and it was found that alpha was significantly greater in the posterior region as compared to the frontal region. Conclusions: These findings from this study suggest that nondirective meditation techniques alter theta and alpha EEG patterns significantly more than regular relaxation, in a manner that is perhaps similar to methods based on mindfulness or concentration.