Author: Huang CY1, Chuang CY1, Shu WY2, Chang CW1, Chen CR1, Fan TC3, Hsu IC1.
Affiliation: 1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan. 2Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan. 3Magnet Group, Instrumentation Development Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
Conference/Journal: PLoS One.
Date published: 2014 Nov 19
Other:
Volume ID: 9 , Issue ID: 11 , Pages: e113424 , Special Notes: doi: 10.1371/journal.pone.0113424 , Word Count: 262
Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.
PMID: 25409520