Biomechanical effects of typical lower limb movements of Chen-style Tai Chi on knee joint Author: Haibo Liu1, He Gong2, Peng Chen1, Le Zhang1, Haipeng Cen1, Yubo Fan1 Affiliation: <sup>1</sup> Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, 100083, People&#x27;s Republic of China. <sup>2</sup> Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, 100083, People&#x27;s Republic of China. bmegonghe@buaa.edu.cn. Conference/Journal: Med Biol Eng Comput Date published: 2023 Aug 25 Other: Special Notes: doi: 10.1007/s11517-023-02906-y. , Word Count: 266 The load and stress distribution on cartilage and meniscus of the knee joint in typical lower limb movements of Chen-style Tai Chi (TC) and deep squat (DS) were analyzed using finite element (FE) analysis. The loadings for this analysis consisted of muscle forces and ground reaction force (GRF), which were calculated through the inverse dynamic approach based on kinematics and force plate measurements obtained from motion capture experiments. Thirteen experienced practitioners performed four typical TC movements, namely, single whip (SW), brush knee and twist step (BKTS), stretch down (SD), and part the wild horse's mane (PWHM), which exhibit lower posture and greater lower limb force compared to other TC styles. The results indicated that TC required greater lower limb muscle strength than DS, resulting in greater knee joint forces. The stress on the medial cartilage in SW and BKTS fell within a range conductive to maintaining the balance between anabolism and catabolism of cartilage matrix. This was due to the fact that SW and BKTS reduce the medial to total tibiofemoral contact force ratios through knee abduction, which may effectively alleviate mild medial knee osteoarthritis (KOA). However, the greater medial contact force ratios observed in SD and PWHM resulted in great contact stresses that may aggravate the pain of patients with KOA. To mitigate these effects, practitioners should consider elevating their postures appropriately to reduce knee flexion angles, especially during the single-leg support phase. This adjustment can decrease the required muscle strength, load and stress on the knee joint. Keywords: Finite element model; KOA; Load distribution; Tai Chi; Tissue response. PMID: 37624535 DOI: 10.1007/s11517-023-02906-y