Emerging Science of Bioelectromagnetic Medicine

Bioelectric Medicine is coming of age in the 21st Century. The explosive growth in understanding the relationship between electromagnetism and physiology is creating amazing non-invasive diagnostic and treatment tools.

 

PubMed.gov logoThe effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes.

Scientists Use Brain Stimulation to Boost Creativity, Set Stage to Potentially Treat Depression. Using a weak electric current to alter a specific brain activity pattern, UNC School of Medicine researchers increased creativity in healthy adults.

PubMed.gov logoHealing in the New Millennium: Bone Stimulators: An Overview of Where We've Been and Where We May be Heading. Bone stimulators encompass several technologies that promote bone healing via manipulation of energy fields. Primary indications for the use of bone stimulation devices are the delayed union and nonunion.

PubMed.gov logoElectromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness. Biological systems are subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system.

PubMed.gov logoLight Regulated MicroRNAs. MicroRNAs, which are short, non-coding RNAs that regulate gene expression by targeting many messenger RNAs, are emerging as important mediators of radiation induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation.

PubMed.gov logoElectromagnetic Fields Mediate Efficient Cell Reprogramming into The Pluripotent State. Not only can EMF exposure be used as an efficient tool for epigenetic reprogramming, but naturally occurring EMF plays an important role in biological processes, including the acquisition of pluripotency.

PubMed.gov logoThe Effects of Non-Invasive Radiofrequency Treatment and Hyperthermia on Malignant and Nonmalignant Cells. Non-invasive radio-frequency treatment caused declines in cancer cell viability and proliferation.

pubmed logo


Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range
. The authors discuss identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.

pubmed logoHow to control proteins with light in living systems. The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.

Virtual-Reality Video Game To Help Burn Patients Play Their Way To Pain Relief. The virtual-reality system eases pain of treatment by immersing burn patients in a wintry, computer-generated environment. Its interactive, multi-sensory, features put patients in a deep freeze of distraction, leaving less attention for the processing of incoming pain signals. It’s similar to what has been done with music, movies and even two-dimensional video games, but more effective because it involves problem-solving activities that emphasize coolness.

pubmed logoEpigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields. Extremely low-frequency electromagnetic fields stimulated hippocampal neurogenesis.

pubmed logoElectromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Electromagnetic fields found to non-invasively aid healing.

Body Area Networks (BAN) - the cutting edge in health monitoring technologies. Most of us are familiar with LANs (local area networks) and WANs (wide-area networks) for computers. Now there's an entirely new class of networks that is being envisioned to monitor the health of your body via intrabody communications. Portable EEgs are an example of this emerging technology (see Easing Brain Fatigue With a Walk in the Park).

pubmed logoBioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone. Endogenous electric signals, such as spatial gradients of resting potential among non-excitable cells in vivo, have also been shown to be important in cell proliferation, differentiation, migration, and tissue regeneration, and may therefore have as-yet unexplored therapeutic potential for regulating wound healing in bone tissue.

Radiofrequency in cosmetic dermatology. The demand for noninvasive methods of facial and body rejuvenation has experienced exponential growth over the last decade. There is a particular interest in safe and effective ways to decrease skin laxity and smooth irregular body contours and texture without downtime. These noninvasive treatments are being sought after because less time for recovery means less time lost from work and social endeavors.

Stanford engineer invents safe way to transfer energy to medical chips in the body. A wireless system developed by Assistant Professor Ada Poon uses the same power as a cell phone to safely transmit energy to chips the size of a grain of rice. The technology paves the way for new "electroceutical" devices to treat illness or alleviate pain.

pubmed logoBiophoton transfer along the nerves of rats has been demonstrated experimentally. Different spectral light stimulation (infrared, red, yellow, blue, green and white) at one end of the spinal sensory or motor nerve roots resulted in a significant increase in the biophotonic activity at the other end. Such effects could be significantly inhibited by procaine (a regional anaesthetic for neural conduction block) or classic metabolic inhibitors, suggesting that light stimulation can generate biophotons that conduct along the neural fibers, probably as neural communication signals. The mechanism of biophotonic conduction along neural fibers may be mediated by protein-protein biophotonic interactions.

pubmed logoWireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. Unobtrusive continuous monitoring of important vital signs and activity metrics has the potential to provide remote health monitoring, at-home screening, and rapid notification of critical events such as heart attacks, falls, or respiratory distress.

Magnets may cure acid reflux. A small band of magnets placed around the valve just above the stomach to prevent acid from rising into the esophagus or throat expands to allow food to travel from the esophagus into the stomach but also tightens the valve so that acid does not rise up out of the stomach. Once the band is in place, patients can resume a normal diet without any reflux symptoms.

pubmed logoOptical magnetic imaging of living cells. This research demonstrates magnetic imaging of living cells under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip.

pubmed logoMagnetic sensing via ultrasonic excitation. Magnetization on the surface of ferromagnetic metals is temporally modulated with the rf frequency of the irradiated ultrasonic waves, and the near-field components emitted from the focal point of the ultrasonic beam are detected.

pubmed logoExtremely low frequency electromagnetic field (EMF) and wound healing: implication of cytokines as biological mediators. Research supports an anti-inflammatory effect of EMFs by the modulation of cytokine profiles that drive the transition from a chronic pro-inflammatory state to an anti-inflammatory state of the healing process. In this review, we focus on the effect of EMFs on skin wound healing showing emerging details of the anti-inflammatory effects of EMFs, with a view to cytokines as candidate biomarkers.

Magnetic Medicine. Nanoparticles and magnetic fields train immune cells to fight cancer in mice.

 

A new technique maps the brain circuit for Parkinson’s disease tremors. It should help improve treatments, and in the long term provide a way to identify, map and ultimately repair neural circuits associated with other brain diseases.

pubmed logo

Healing Sound: Stimulation of Protein Expression Through the Harmonic Resonance of Frequency-Specific Music. Exposure to 'music' that was designed through assigning a musical note for every single one of the twenty unique amino acids, produced both an analytical and a visible shift in protein synthesis, making it as potential tool for reducing procedural time uptake. This research provides some insight into how the various types of healing sound Qigong might work. 

pubmed logo

Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity.

 

pubmed logo Multiple Integrated Complementary Healing Approaches: Energetics & Light for boneA synergistic-healing strategy that combines molecular targeting within a system-wide perspective is presented as the Multiple Integrated Complementary Healing Approaches: Energetics And Light (MICHAEL). The basis of the MICHAEL approach is the realization that environmental, nutritional and electromagnetic factors form a regulatory framework involved in bone and nerve healing. The interactions of light, energy, and nutrition with neural, hormonal and cellular pathways will be presented. Energetic therapies including electrical, low-intensity pulsed ultrasound and light based treatments affect growth, differentiation and proliferation of bone and nerve and can be utilized for their healing benefits. However, the benefits of these therapies can be impaired by the absence of nutritional, hormonal and organismal factors.

 

pubmed logo

Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organizationThe appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

 

pubmed logo

Where have the organizers gone? - The growth control system as a foundation of physiology. A model of growth control system suggests that the organizers in embryogenesis continue to exist and partially retain their function after embryogenesis. The organizers are the macroscopic singular points of the morphogen gradient and bioelectric fields. They have higher metabolic rate, higher density of gap junctions and stem cells than the surrounding tissue. The growth control model predicts that the organizers are likely to exist at the extreme points of surface or interface curvature of the body. Changes in bioelectric field at organizers precede the morphological and anatomical changes in morphogenesis and pathogenesis. Subtle perturbations at organizers can cause long lasting systemic effects. These features of organizers can be used for diagnostic and therapeutic purposes such as regenerative medicine. There is increasing evidence that acupuncture points are likely to have originated from organizers in embryogenesis. Many corollaries and predictions of the growth control model have been independently confirmed. The growth control system is embedded in various physiological systems and is part of the foundation of physiology and pathophysiology.

 

 

 

Electron Holography

Electron Holography Produces First Image of a Single Protein. This research demonstrates the imaging of proteins using low energy electron beams that don’t destroy biomolecules. Low energy electron beams have a wavelength of about a nanometer with is perfect for measuring proteins as well as holography.

 

pubmed logoElectron Holography: phases matter. Phases have to be determined precisely, because they encode the most dominant object properties, such as charge distributions and electromagnetic fields.

Terahertz Technology

pubmed logoTerahertz nanotechnology. Terahertz (THZ) spectroscopy techniques are becoming increasingly important in nanomaterial characterization. In contrast to hazardous x-ray radiation, in medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules.

pubmed logoTerahertz detection and imaging systems. Field effect transistors (FETs) based on semiconductor nanowires (NWs) are highly-sensitive room-temperature plasma-wave broadband terahertz (THz) detectors.

pubmed logoTerahertz molecular imaging. The principle, characteristics and applications of molecular imaging with terahertz electromagnetic waves are reviewed in this paper. Surface plasmons, induced around the nanoparticles, raise the temperature of water in biological cells, and the temperature-dependent changes in the optical properties of water, which are large in the terahertz range, are measured differentially by terahertz waves.

 

pubmed logoTransient and selective suppression of neural activity with infrared light. It is possible to selectively and transiently inhibit electrically-initiated axonal activation, as well as to both block or enhance the propagation of action potentials of specific motor neurons. Thus, in addition to previously shown excitation, we demonstrate an optical method of suppressing components of the nervous system with functional spatiotemporal precision.

Food Quality and Safety

 

pubmed logoQuantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample.